Химическая Термодинамика
Химическая Термодинамика
Страница 8

Изменение химической энергии зависит от условий, поэтому раз­витие химических реакций, как и всех остальных процессов, на­пример тепловых, определяется вторым началом термодинамики. Согласно второму началу термодинамики (сформулированному в окончательной форме Клаузиусом и Гельмгольцем в середине XIX в.) теплота может переходить в работу только при нали­чии разности температур и не целиком, а с определен­ным термическим коэффициентом полезного действия (η):

(12)

где A — работа, полученная за счет перехода теплоты от тела с вы­сокой температурой (Т1) к телу с низкой температурой (Т2); Q1 — теплота, взятая у нагретого тела с температурой Т1; Q2 — теплота, отданная холодному телу с температурой Т2.

Учитывая, что температура выражена в абсолютной шкале, мы видим, что КПД тепловых машин вообще невелик. Например, КПД теплоэлектроцентрали, работающей с перегревом пара до 673 К и с конденсатором при Т2 =323 К

или 52%

(И это без учета всех остальных потерь в рабочем цикле турбин и механических потерь!)

Таким образом, для любых процессов, протекающих под дей­ствием разности потенциалов (grad P), каковой для тепловых про­цессов является разность температур, для элект­рических — разность потенциалов, для механи­ческих — разность высот и т.д., общим является сравнительно низкий коэффициент полезного действия. Значение КПД обращается в единицу, если в уравнении (12) Т20, но абсолютный нуль недостижим. Следовательно, всю энергию нагретого тела при температуре Т1, в работу превратить нельзя.

Заряд q проходит разность потенциалов, со­вершая работу

A=q(U1-U2). (13)

Однако всю энергию он отдает только в том слу­чае, если U2→O.

Вода вращает турбину при перепаде уровней воды: верхний бьеф — нижний бьеф плотины:

(14)

Однако всю энергию положения (потенциальную) вода отдаст только в том случае, если h2 → 0, т. е. вода будет падать до центра земли, что невозможно.

Таким образом, при совершении работы часть общей энергии системы остается неиспользованной.

При течении химических реакций энтальпия начальных продук­тов не может вся перейти в работу или теплоту, так как в конеч­ных продуктах реакции сумма энтальпий не равна нулю. Если гра­диент движущих сил (Т, U, h и т. д.) равен нулю, то и работа, со­вершающаяся в процессе, равна нулю, а система будет находиться в состоянии равновесия: при Т1=Т2 закончится теплообмен: элек­трический заряд не осуществляет работы, если U1 = U2 турбины не работают при спущенной плотине; химическая реакция будет достигать равновесия, когда количество полученных конечных про­дуктов равно количеству разложившихся конечных продуктов на первоначальные за единицу времени.

Исследуя выражение для КПД тепловой машины, Клаузиус ввел новую термодинамическую функцию, которую назвал энтропией. В самом деле:

или

отсюда

или (15)

Таким образом, при проведении цикла в идеальной тепловой машине (цикл Карно) и получении механической работы отношение полученной теплоты к температуре нагретого источника равно та­кому же отношению для холодного источника. Так как Q является в уравнении (15) приращением энергии, то можно это отношение записать в дифференциальной форме для элементарных циклов:

Страницы: 4 5 6 7 8 9 10 11 12

ФЕРМЕНТЫ (от лат . fermentum - закваска) (энзимы), биологические катализаторы, присутствующие во всех живых клетках. Осуществляют превращения веществ в организме, направляя и регулируя тем самым его обмен веществ. По химической природе - белки. Ферменты обладают оптимальной активностью при определенном рН, наличии необходимых коферментов и кофакторов, отсутствии ингибиторов. Каждый вид ферментов катализирует превращение определенных веществ (субстратов), иногда лишь единственного вещества в единственном направлении. Поэтому многочисленные биохимические реакции в клетках осуществляет огромное число различных ферментов. Все ферменты подразделяются на 6 классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы. Многие ферменты выделены из живых клеток и получены в кристаллическом виде (впервые в 1926). Ферментные препараты применяют в медицине, в пищевой и легкой промышленности.

ИВАНОВ Игорь Петрович (1923-92) , российский педагог, доктор педагогических наук (1971), действительный член АПН (1989), профессор. Работы по проблемам коллективной деятельности взрослых и детей.

РЕЧЬ ХУДОЖЕСТВЕННАЯ (речь поэтическая) , реализация эстетической функции языка. Специфика художественной речи - в максимальной организованности и выразительно-смысловой значимости каждого ее элемента. Формируется в устном народном поэтическом творчестве при отождествлении явлений жизни человека и природы (психологический параллелизм); приобретает свойства переносить признаки с предмета на предмет по сходству (метафора) и по смежности (метонимия); сближая далекие по значению слова, формирует и развивает многозначность слова, придает речи усложненную фонологическую организацию, в т. ч. ритмичность. Делится на стихотворную и прозаическую области (см. Поэзия и Проза). Наряду с этим художественной речи свойственны и внеэстетические функции языка: установление контакта между говорящим и слушающим (автором и читателем), передача информации, прямое эмоциональное воздействие на слушателя (читателя), выражение отношения говорящего (пишущего) к предмету речи, уточнение и истолкование сообщения.