Эндометаллофуллерены
Эндометаллофуллерены
Страница 14

Состояние атомных частиц, заключенных в фуллереновую оболочку, уникально и не может быть воспроизведено каким-либо другим способом. Так, атомы металла передают, частично или полностью, свои валентные электроны на внешнюю часть фуллереновой оболочки, практически теряя свою химическую индивидуальность. Это определяет смещенное относительно центра молекулы положение атома внутри углеродного каркаса и придает эндоэдральной молекуле постоянный дипольный момент. Исследование свойств таких частиц существенно расширяет наши представление о поведении квантовых объектов в необычных условиях.

Возможность непосредственного практического применения эндоэдральных структур в технологии и технике физического эксперимента в настоящее время довольно ограничено, что связано в первую очередь с чрезвычайно высокой стоимостью их производства.

Таким образом, эндоэдральные структуры представляют собой новый класс объектов нанометровых размеров, которые обладают уникальными физико-химическими свойствами и чрезвычайно перспективны для практического использования. Несомненно. в ближайшем будущем можно ожидать открытия новых интересных особенностей в поведении этих объектов, а также реализации потенциальных возможностей их практического применения.

Список литературы

1. Соколов В.И., Станкевич И.В., Успехи химии 62(5) (1993) 455-472.

2. Kroto H.W., Heath J.R., O`Brien S.C, Curl R.F., Smalley R.E., Nature 318 (1985) 162-163.

3. Heath J.R., O`Brien S.C., Zhang Q., Lui Y., Curl R.F., Kroto H.W., Smalley R.E., J. Am. Chem. Soc. 107 (1985) 7779-7782.

4. Bethune D.S., Johnson R.D., Salem J.R., de Veles M.S., Yannoni C.S., Nature 336 (1993) 123-128.

5. Xiao J.,. Savina M.R., Marin G.B., Francis A.H., Meyerhoff M.E., J. Am. Chem. Soc. 116 (1994) 9341-9342.

6. Nagase S., Kobayashi K., Acasaka T., Bull. Chem. Soc. Jpn. 69 (1996) 2131-2142.

7. Tucuta M., Umeda B., Nishibori E., Sucuta M., Saito Y., Ohno M., Shinohara H.,Nature 377 (1995) 46-49.

8. Sueki K., Kikuchi K., Akiyama K., Sawa T., Katada M., Ambe S., Ambe F., Nakahara H., Chem Phys. Lett. 300 (1999) 140-144.

9. Xu Z., Nakane T., Shinohara H., J. Am. Chem. Soc.118 (1996) 11309-11310.

10. Shinohara H., Kagaku 47(4) (1992) 248-252.

11. Schinazi R.F., Chiang L.Y., Wilson L.J., Cagle D.W., Hill C.L., Fullerenes, edited by Kadish K.M. and Ruoff R.S. (The Electrochemical Society, Pennington, N14, 1997) 357-360.

12. Елецкий А.В., Успехи физических наук 170(2) (2000) 113-142.

Страницы: 10 11 12 13 14 15

ТВЕНХОФЕЛ (Twenhofel) Уильям Генри (1875-1957) , американский геолог и палеонтолог. Первым систематизировал сведения о современных осадках и осадочных горных породах. Труды по литологии и палеонтологии беспозвоночных.

ВАД , минерал группы псиломелана, собирательное название землистых и сажистых агрегатов водного MnO2 с переменным содержанием примесей K, Ba, Cu, Zn, Fe, Pb, W, Li, Co, Ni. Разновидность вада - асболан (до 17% CoO наряду с Ni и Cu). Твердость 1-4; плотность 2,8-4,4 г/см3. Гипергенный. Руда марганца, кобальта и никеля.

ЕЖИ , семейство млекопитающих отряда насекомоядных. Ок. 20 видов, объединяемых в 2 подсемейства: настоящие ежи и гимнуры (или крысиные ежи). У настоящих ежей тело (на спине) покрыто иглами; при сокращении подкожной кольцевой мышцы свертываются в шар. Распространены в Евразии и Африке, в лесах, степях, пустынях. Европейские, или обыкновенные, ежи (длина тела 20-25 см) населяют лесостепную зону Европы и Зап. Сибири; среди поедаемых им насекомых - виды, вредящие сельскому и лесному хозяйству; носитель паразитирующих на нем клещей, в т. ч. энцефалитных. Даурский еж охраняется.