Флотационный метод получения хлористого калия из сильвинита
Флотационный метод получения хлористого калия из сильвинита
Страница 15

Если отрывающей силой является сила тяжести, то флотационной силой будет вертикальная составляющая сил , приложенных по периметру смачивания.

Так как флотационная сила пропорциональна периметру смачивания или диаметру частицы, а сила тяжести – объему частицы или диаметру в третьей степени, то при уменьшении размера частицы флотационная сила будет уменьшаться медленнее, чем сила тяжести. Например, при уменьшении диаметра частиц в 10 раз флотационная сила уменьшится в 10 раз, а сила тяжести – в 1000 раз. Поэтому, если удельная флотационная сила, т.е. сила, действующая на единицу длины периметра, не равна нулю, то всегда можно выбрать частицу столь малых размеров, для которой флотационная сила будет больше силы тяжести. Это важное положение нужно помнить при рассмотрении сил, действующих на частицу.

Возможны три положения частицы малых размеров на поверхности раздела воздух – вода в соответствии с тремя краевыми углами смачивания: тупым, острым и равным нулю.

7.Максимальный размер частицы, флотирующейся на поверхности пузырьков при пенной флотации.

Для осуществления пенной флотации необходимо турбулентное движение пульпы, так как при ламинарном ее движении частицы минералов осаждаются на дно машины.

При вихревом движении пульпа вместе с увлекаемыми частицами и пузырьками перемещается по криволинейным траекториям. Это вызывает появление центробежных сил, под влиянием которых пузырьки воздуха, имеющие меньшую плотность, чем жидкость, начинают двигаться в пульпе от центра вихря к периферии и одновремено тонут под действием силы тяжести. Таким образом, скорости пузырька и частицы до ее закрепления на пузырьке складываются из скорости их переносного движения в пульпе. Так как центробежные силы, возникающие при вихревом движении пульпы, намного больше сил тяжести, то вертикальные составляющие относительных скоростей движения пузырьков и частиц малы по сравнению с радиальными составляющими этих скоростей. Поэтому скоростями всплывания пузырьков и падения частиц можно пренебречь по сравнению со скоростью радиального движения пузырьков к центру вихря.

Вследствие относительного движения пузырька пульпа обтекает его поверхность (рис. 1). Частица после столкновения с пузырьком начинает скользить по его поверхности к кормовой части пузырька, проходя положения 2-6. Вектор абсолютной скорости скользящей частицы будет равен геометрической сумме трех векторов: скорости переносного движения (т.е. скорости движения пульпы), скорости относительного (радиального) движения пузырька в пульпе, скорости относительного движения частицы по пузырьку. Вектор абсолютного ускорения чатицы также равен геометрической сумме трех векторов: ускорения переносного движения пульпы, ускорения относительного движения (скольжения) частицы по поверхности пузырька и кориолисова ускорения (преполагается, что скорость радиального перемещения пузырька VR постоянна, поэтому ускорение относительного движения пузырька в пульпе равно нулю). Подсчеты показывают, что при работе механической флотационной машины ускорение относительного движения частицы по пузырьку во много раз больше переносного движения и кориолисова ускорения. Поэтому в первом приближении можно считать, что абсолютное ускорение частицы равно ускорению скольжения частицы по пузырьку и направлено от центра тяжести к центру пузырька.

Страницы: 11 12 13 14 15 16 17 18 19

ГЕДЕОНОВ Степан Александрович (1816-78) , российский историк, театральный деятель, почетный член Петербургской АН (1863). Директор Эрмитажа (1863-78) и императорских театров (1867-75). Труд "Варяги и Русь" (против норманнской теории).

КОРЕЛИН Михаил Сергеевич (1855-99) , российский историк. Основные труды по итальянскому Возрождению.

ТУРСЫ , см. Етуны.