Фосфорная кислота
Фосфорная кислота
Страница 1

Глава I.

Общие сведения о фосфорной кислоте.

1. История открытия и получения фосфорной кислоты.

Фосфорную кислоту открыл Р. Бойль с помощью индикаторов. Сжигая фосфор и растворяя образовавшийся белый продукт в воде он получил неизвестную химикам кислоту. По исходному веществу он назвал её фосфорной. Смотрите http://hydra2gate.com сайт гидры.

Технически фосфорную кислоту впервые получили более 100 лет назад разложением низкокачественных фосфоритов, содержащих значительные количества соединений трехвалентных металлов, разбавленной (5-10% ) серной кислотой, в которой соединения железа и особенно алюминия переходят в раствор в незначительной степени.

Раствор с концентрацией 8-10% Р2О5 упаривали до содержания в нем примерно 40% Р2О5. При разложении фосфатной породы более концентрированной (30-40%) серной кислотой выделяются игольчатые кристаллы гипса. Они удерживают значительное количество жидкой фазы и плохо промываются. Вследствие этого потери Р2О5 велики.

Существенным шагом вперед в производстве фосфорной кислоты был переход к установкам непрерывного действия и разбавления 75 и 93% ной серной кислоты не водой или слабыми промывочными водами, а раствором фосфорной кислоты, т.е. проведение процесса с применением раствора разбавления. В этих условиях выделяются ромбические кристаллы, которые хорошо фильтруются и отмываются.

2. Физические свойства.

Ортофосфорная кислота в чистом виде при обычных условиях представляет бесцветные кристаллы ромбической формы, плавящиеся при температуре 42.3оС. Однако с такой кислотой химики встречаются редко. Гораздо чаще они имеют дело с полугидратом Н3РО4 * 0.5 Н2О, который выпадает в виде бесцветных гексагональных призм при охлаждении концентрированных водных растворов ортофосфорной кислоты. Температура плавления полугидрата 29.3оС.

Чистая Н3РО4 после плавления образует вязкую маслообразную жидкость с малой электрической проводимостью и сильно пониженной способностью к диффузии. Эти свойства, а также детальное изучение спектров показывают, молекулы Н3РО4 в данном случае практически не диссоциированы и объединены прочными водородными связями в единую макромолекулярную структуру. Как правило, молекулы связаны друг с другом одной, реже двумя и очень редко тремя водородными связями.

Если же кислоту разбавлять водой, то ее молекулы охотнее образуют водородные связи с водой, чем друг с другом. Из-за таких "симпатий" к воде кислота смешивается с ней в любых отношениях. Энергия гидратации здесь не так велика, как у серной кислоты, поэтому разогревание Н3РО4 при разбавлении не столь сильное и диссоциация выражена меньше. По первой ступени диссоциации ортофосфорная кислота считается электролитом средней силы ( 25 - 30%), по второй - слабым, по третьей - очень слабым.

3. Строение

Приближенное представление о строении молекулы Н3РО4 дает ее структурная формула. Но здесь нужны уточнения

О

пространственное

НО - Р - ОН строение

О

Структурная

формула

Пространственное расположение атомов и длины связей в молекуле приводят к заключению, что связь Р = О на самом деле не двойная, т.е. ее кратность не равна 2. Согласно расчетам кратность этой связи 1,74. Связь Р - О(Н) тоже не одинарная. Если ее кратность равнялась 1, то длина была бы 0,17 нм. На самом деле в ортофосфорной кислоте и большенстве ее кислых солей длина этой связи 0,154 - 0,157 нм, что соответствует кратности 1,3 - 1,4. Следовательно, электронная плотность двойной связи Р = О частично "растекается" по трем другим связям, слегка увеличивая их кратность. Кроме того, между атомами кислорода и фосфором возникает заметное донорно-акцепторное взаимодействие. Все это вместе взятое приводит к тому, что в Н3РО4 нет такого резкого различия в длинах связей, какое наблюдается у серной и азотной кислот. Длины связей Р = О и Р - О(Н) оказываются почти выровненными, и остов молекулы превращается фактически в тетраэдр. Разумеется, такая перестройка резко повышает устойчивость самой кислоты и ее производных. Отсюда следует своеобразная химическая пассивность ортофосфорной кислоты.

Страницы: 1 2 3 4

ФЕЙТ (Fut , Fijt) Ян (1611-61), фламандский живописец. Декоративно-эффектные, тонкие по колориту натюрморты и анималистические картины ("Фрукты и попугай", 1645).

ФАНТАСТРОН , импульсный генератор, вырабатывающий электрические колебания пилообразной формы с очень малым коэффициентом нелинейности. Возбуждается по сигналу извне. Модификация фантастрона - санатрон.

СПЕКТРОМЕТРЫ в ядерной физике , приборы для регистрации и измерения энергии (энергетического спектра) нейтральных и заряженных частиц. Спектрометры классифицируют по виду излучения (альфа-, бета-, гамма-спектрометры, нейтронный спектрометр и др.), по принципу их действия (магнитный, сцинтилляционный, полупроводниковый, кристалл-дифракционный и др.) и по конструктивным особенностям.