Хлор
Хлор
Страница 5

1) С12 + hn = С1 + С1 (первоначальное возбуждение)

2) .С1 + Н2 = НС1 + Н

3) .Н+ С12 = НС1 + С1 и т. д.

Таким образом, получается как бы цепь последовательных реакций, причем за счет каждой первоначально возбужденной молекулы Сl2 образуется в среднем 100 тыс. молекул НС1. Реакции подобного типа называются цепными. Они играют важную роль при протекании многих химических процессов.

Фотохимическая диссоциация молекулы хлора на атомы вызывается светом с длиной волны 550 нм. Обеим стадиям цепной реакции образования хлористого водорода соответствуют следующие термохимические уравнения:

С1 + Н2 + 1 кДж = НС1 + Н и Н + С12 = НС1 + С1 + 188 кДж. Энергия активации первой из этих реакций составляет 25, а второй 8 кДж/моль. Малыми значениями этих энергий и обусловлено быстрое развитие цепи.

Очевидно, что цепь могла бы оборваться, если бы протекала реакция: Н + С1 = НС1. Такая возможность не исключена, однако вероятность осуществления этой реакции очень мала, так как концентрация атомов ничтожна по сравнению с концентрацией молекул и поэтому несравненно больше шансов имеет столкновение каждого из атомов с молекулой другого элемента, чем обоих атомов друг с другом. С другой стороны, произведенные на основе экспериментальных данных расчеты показывают, что даже при столкновении обоих атомов соединение между ними происходит далеко не всегда,

Рис 1-2 888888888

наоборот, процент успешных встреч очень мал. По этим же причинам цепи редко обрываются в результате реакций: С1+ Сl = С12 и Н + Н = Н2. Так, последняя из них осуществляется в газовой фазе лишь при одном столкновении из каждого миллиона.

“Огромное большинство реакций при ближайшем рассмотрении являются цепными реакциями” (Н. Н. Семенов). Это нередко вызывает отклонение их действительной молекулярности от отвечающей простейшему суммарному уравнению. В частности наблюдаемая на опыте бимолекулярность реакции образования волы из элементов обусловлена именно ее цепным характером: начало цепи дает (с энергией активации 188 кДж/моль) реакция Н2 + О2 = 2 ОН, после чего цепь разветвляется по схемам: ОН + Н2 = Н2О + Н, Н + О2 = ОН + О, О + Н2 = ОН + Н и т. д. Как видно из этих схем, число активных участников реакции (ОН, Н, О) последовательно возрастает, вследствие чего процесс протекает с самоускорением. Это и характерно для разветвленных цепных реакций, в отличие от неразветвленных, примером которых может служить синтез хлористого водорода.

Страницы: 1 2 3 4 5 6 7 8 9

ВОЗВЫШЕННОЕ , категория эстетики, характеризующая внутреннюю значительность, величие предметов и явлений. Получила распространение в эстетике 18 - нач. 19 вв. В античности возвышенное ("высокое") - особый стиль ораторской речи (сочинение Псевдо-Лонгина "О возвышенном", 1 в. н. э.).

ФАРАДЕЙ (Faraday) Майкл (22 сентября 1791 , Лондон - 25 августа 1867, там же), английский физик, основоположник современной концепции поля в электродинамике, автор ряда фундаментальных открытий, в том числе закона электромагнитной индукции, законов электролиза, явления вращения плоскости поляризации света в магнитном поле, один из первых исследователей воздействия магнитного поля на среды. Детство и юностьФарадей родился в семье кузнеца. Кузнецом был и его старший брат Роберт, всячески поощрявший тягу Майкла к знаниям и на первых порах поддерживавший его материально. Мать Фарадея, трудолюбивая, мудрая, хотя и необразованная женщина, дожила до времени, когда ее сын добился успехов и признания, и по праву гордилась им.Скромные доходы семьи не позволили Майклу окончить даже среднюю школу, и тринадцати лет он поступил учеником к владельцу книжной лавки и переплетной мастерской, где ему предстояло пробыть 10 лет. Все это время Фарадей упорно занимался самообразованием - прочитал всю доступную ему литературу по физике и химии, повторял в устроенной им домашней лаборатории опыты, описанные в книгах, посещал по вечерам и воскресеньям частные лекции по физике и астрономии. Деньги (по шиллингу на оплату каждой лекции) он получал от брата. На лекциях у Фарадея появились новые знакомые, которым он писал много писем, чтобы выработать ясный и лаконичный стиль изложения; он также старался овладеть приемами ораторского искусства.Начало работы в Королевском институтеОдин из клиентов переплетной мастерской, член Лондонского королевского общества Дено, заметив интерес Фарадея к науке, помог ему попасть на лекции выдающегося физика и химика Г. Дэви в Королевском институте. Фарадей тщательно записал и переплел четыре лекции и вместе с письмом послал их лектору. Этот "смелый и наивный шаг", по словам самого Фарадея, оказал на его судьбу решающее влияние. В 1813 Дэви (не без некоторого колебания) пригласил Фарадея на освободившееся место ассистента в Королевский институт, а осенью того же года взял его в двухгодичную поездку по научным центрам Европы. Это путешествие имело для Фарадея большое значение: он вместе с Дэви посетил ряд лабораторий, познакомился с такими учеными, как А. Ампер, М. Шеврель, Ж. Л. Гей-Люссак, которые в свою очередь обратили внимание на блестящие способности молодого англичанина.Первые самостоятельные исследования. Научные публикацииПосле возвращения в 1815 в Королевский институт Фарадей приступил к интенсивной работе, в которой все большее место занимали самостоятельные научные исследования. В 1816 он начал читать публичный курс лекций по физике и химии в Обществе для самообразования. В этом же году появляется и его первая печатная работа.В 1821 в жизни Фарадея произошло несколько важных событий. Он получил место надзирателя за зданием и лабораториями Королевского института (т. е. технического смотрителя) и опубликовал две значительные научные работы (о вращениях тока вокруг магнита и магнита вокруг тока и о сжижении хлора). В том же году он женился и, как показала вся его дальнейшая жизнь, был весьма счастлив в браке.В период до 1821 Фарадей опубликовал около 40 научных работ, главным образом по химии. Постепенно его экспериментальные исследования все более переключались в область электромагнетизма. После открытия в 1820 Х. Эрстедом магнитного действия электрического тока Фарадея увлекла проблема связи между электричеством и магнетизмом. В 1822 в его лабораторном дневнике появилась запись: "Превратить магнетизм в электричество". Однако Фарадей продолжал и другие исследования, в том числе в области химии. Так, в 1824 ему первому удалось получить хлор в жидком состоянии.Избрание в Королевское общество. ПрофессураВ 1824 Фарадей был избран членом Королевского общества, несмотря на активное противодействие Дэви, отношения с которым стали у Фарадея к тому времени довольно сложными, хотя Дэви любил повторять, что из всех его открытий самым значительным было "открытие Фарадея". Последний также воздавал должное Дэви, называя его "великим человеком".Спустя год после избрания в Королевское общество Фарадея назначают директором лаборатории Королевского института, а в 1827 он получает в этом институте профессорскую кафедру.Закон электромагнитной индукции. ЭлектролизВ 1830, несмотря на стесненное материальное положение, Фарадей решительно отказывается от всех побочных занятий, выполнения любых научно-технических исследований и других работ (кроме чтения лекций по химии), чтобы целиком посвятить себя научным изысканиям. Вскоре он добивается блестящего успеха: 29 августа 1831 открывает явление электромагнитной индукции - явление порождения электрического поля переменным магнитным полем. Десять дней напряженнейшей работы позволили Фарадею всесторонне и полностью исследовать это явление, которое без преувеличения можно назвать фундаментом, в частности, всей современной электротехники. Но сам Фарадей не интересовался прикладными возможностями своих открытий, он стремился к главному - исследованию законов Природы. Открытие электромагнитной индукции принесло Фарадею известность. Но он по-прежнему был очень стеснен в средствах, так что его друзья были вынуждены хлопотать о предоставлении ему пожизненной правительственной пенсии. Эти хлопоты увенчались успехом лишь в 1835. Когда же у Фарадея возникло впечатление, что министр казначейства относится к этой пенсии как к подачке ученому, он направил министру письмо, в котором с достоинством отказался от всякой пенсии. Министру пришлось просить извинения у Фарадея. В 1833-34 Фарадей изучал прохождение электрических токов через растворы кислот, солей и щелочей, что привело его к открытию законов электролиза. Эти законы (Фарадея законы) впоследствии сыграли важную роль в становлении представлений о дискретных носителях электрического заряда. До конца 1830-х гг. Фарадей выполнил обширные исследования электрических явлений в диэлектриках.Болезнь Фарадея. Последние экспериментальные работыПостоянное огромное умственное напряжение подорвало здоровье Фарадея и вынудило его в 1840 прервать на пять лет научную работу. Вернувшись к ней вновь, Фарадей в 1848 открыл явление вращения плоскости поляризации света, распространяющегося в прозрачных веществах вдоль линий напряженности магнитного поля (Фарадея эффект). По-видимому, сам Фарадей (взволнованно написавший, что он "намагнитил свет и осветил магнитную силовую линию") придавал этому открытию большое значение. И действительно, оно явилось первым указанием на существование связи между оптикой и электромагнетизмом. Убежденность в глубокой взаимосвязи электрических, магнитных, оптических и других физических и химических явлений стала основой всего научного миропонимания Фарадея.Другие экспериментальные работы Фарадея этого времени посвящены исследованиям магнитных свойств различных сред. В частности, в 1845 им были открыты явления диамагнетизма и парамагнетизма.В 1855 болезнь вновь заставила Фарадея прервать работу. Он значительно ослабел, стал катастрофически терять память. Ему приходилось записывать в лабораторный журнал все, вплоть до того, куда и что он положил перед уходом из лаборатории, что он уже сделал и что собирался делать далее. Чтобы продолжать работать, он должен был отказаться от многого, в том числе и от посещения друзей; последнее, от чего он отказался, были лекции для детей.Значение научных трудовДаже далеко не полный перечень того, что внес в науку Фарадей, дает представление об исключительном значении его трудов. В этом перечне, однако, отсутствует то главное, что составляет громадную научную заслугу Фарадея: он первым создал полевую концепцию в учении об электричестве и магнетизме. Если до него господствовало представление о прямом и мгновенном взаимодействии зарядов и токов через пустое пространство, то Фарадей последовательно развивал идею о том, что активным материальным переносчиком этого взаимодействия является электромагнитное поле. Об этом прекрасно написал Д. К. Максвелл, ставший его последователем, развивший далее его учение и облекший представления об электромагнитном поле в четкую математическую форму: "Фарадей своим мысленным оком видел силовые линии, принизывающие все пространство. Там, где математики видели центры напряжения сил дальнодействия, Фарадей видел промежуточный агент. Где они не видели ничего, кроме расстояния, удовлетворяясь тем, что находили закон распределения сил, действующих на электрические флюиды, Фарадей искал сущность реальных явлений, протекающих в среде".Точка зрения на электродинамику с позиций концепции поля, основоположником которой был Фарадей, стала неотъемлемой частью современной науки. Труды Фарадея ознаменовали наступление новой эры в физике.Сочинения:Experimental researches in chemistry and physics. London, 1859.Экспериментальные исследования по электричеству: Пер. с англ. М., 1947-59. Т. 1-3.Литература:Радовский М. М. Михаил Фарадей: Биографический очерк. М.; Л., 1946.Кудрявцев П. С. Фарадей. М., 1969.В. Н. Григорьев

МАЛВА , плато в Индии, на северо-западе п-ова Индостан. Высота до 614 м.