Алюминий АлюминийСтраница 9
Несколько особняком стоит углекислотный лазер, работающий на смеси СО2 с N2 и He. Генерируя отвечающее одному из атмосферных “окон” излучение с l = 10,6 мк, он превосходит все другие лазеры по абсолютной выходной мощности в непрерывном режиме (60 кВт и более). Сообщалось, что строятся лазеры мощностью 1 МВт.
Что касается создаваемых лазерами импульсных мощностей (на отдельные доли секунды), то они способны превышать миллионы кВт. Важно, что эта энергия концентрируется не только во времени, но и в пространстве: плотность её может достигать миллиардов кВт/см2, что уже сопоставимо с плотностями энергии, характерными для атомных ядер.
Очень перспективы лазеры на полупроводниках, так как они допускают непосредственное преобразование электрической энергии в световую и могут иметь очень высокий коэффициент полезного действия. Для возможности его работы важно, чтобы число электронов в зоне проводимости полупроводника n-типа и число дырок в валентной зоне полупроводника р-типа было достаточно велико (такие полупроводники называются “вырожденными”). Под действием постоянного тока высокого напряжения электроны и дырки движутся навстречу друг другу. Встречаясь в переходном слое (имеющем толщину порядка десятков микронов), они генерируют световые кванты.
Характеристики излучения отдельных квантовых генераторов весьма различны как по длинам генерируемых волн, так и по мощности лучевого пучка. Такой пучок может быть пригоден, например, и для глазных операций, и для прожигания отверстий в алмазах. Уже определилось множество областей возможного практического использования квантовых генераторов, и число их с каждым годом возрастает. В частности, монохроматический характер лазерного излучения при большой его мощности и уже частично освоенной методике главного измерения l открывает возможность избирательного стимулирования с помощью лазеров желаемых направлений химических процессов.
Ввиду нерастворимости Al2O3 в воде отвечающий этому оксиду гидроксид Al(OН)3 может быть получен лишь косвенным путём (исходя из солей). Он представляет собой объёмистый студенистый осадок белого цвета, практически нерастворимый в воде, но легко растворяющийся в кислотах и сильных щелочах. Гидроксид алюминия имеет, следовательно, амфотерный характер. Однако и основные, и особенно кислотные, его свойства выражены довольно слабо. В избытке NH4OH гидроксид алюминия нерастворим.
ЧЕРНЫЙ ПОРОХ , см. Дымный порох.
РАДИОГРАФИЯ (от радио ... и ...графия), метод исследования различных объектов, использующий воздействие на слой фотоэмульсии прошедшего через вещество излучения радионуклидов. Нуклиды могут вводиться непосредственно в исследуемый объект (авторадиография). Радиографию используют, напр., для контроля качества сварки, литья и т. д., а также в биологических, медицинских и других исследованиях.
ВОДОРОД (лат . Hydrogenium), Н, химический элемент VII группы периодической системы, атомный номер 1, атомная масса 1,00794. В природе встречаются два стабильных изотопа (протий и дейтерий) и один радиоактивный (тритий). Молекула двухатомна (Н2). Газ без цвета и запаха; плотность 0,0899 г/л, tкип = 252,76 °С. Соединяется с многими элементами, с кислородом образует воду. Самый распространенный элемент космоса; составляет (в виде плазмы) более 70% массы Солнца и звезд, основная часть газов межзвездной среды и туманностей. На Земле входит в состав воды, живых организмов, каменного угля, нефти. Применяют в производстве аммиака, соляной кислоты, для гидрогенизации жиров и др., при сварке и резке металлов. Входит в состав синтез-газа. Перспективен как горючее (см. Водородная энергетика).